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We provide analytical results for the perturbative correction to the current-voltage relation through a vibrat-
ing molecule for weak electron-phonon coupling. The nonlinear conductance exhibits a steplike feature at
eV=��0, where �0 is the vibration frequency. We establish criteria for the sign change of the step in the
conductance �up or down�. This transition turns out to be nonuniversal and is governed by essentially all
system parameters.
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Electronic transport through single molecules has at-
tracted much attention lately; for recent reviews, see Refs.
1–5. Besides the technological promises raised by molecular
electronics, this field also poses interesting questions to
theory. In this Brief Report, we will revisit the problem of
how the coupling to a vibrational mode �“phonon”� of fre-
quency �0 and electron-phonon coupling strength g affects
the current through a single molecule. The resulting features
in the I-V characteristics are often referred to as inelastic
electron tunneling spectroscopy.5 Theories for various as-
pects of this rich and diverse problem have been proposed
over the past few years by a large number of authors,6–13

primarily motivated by groundbreaking experiments demon-
strating the influence of vibrational degrees of freedom in
single-molecule transport. To mention just a few key experi-
ments, single-molecule transport has been studied using
various organic molecules,14 fullerenes,15–17 carbon nano-
tubes,18,19 or single hydrogen molecules between Pt leads.20

Phonon-assisted processes were shown to imply a step in the
I-V characteristics once the dc bias V reaches the threshold
value ��0 /e for excitation of a phonon mode. Related fea-
tures can sometimes be seen at integer multiples of this
value. Vibrational effects on single-molecule transport have
recently been reviewed,5 including a discussion of the valid-
ity regime for our Hamiltonian below.

It is remarkable that the experimentally observed
vibration-induced step features in the differential conduc-
tance can either decrease20 or increase the conductance
through the molecule near eV=��0.14,15,17,18 This corre-
sponds to dips versus peaks in the second derivative,
d2I /dV2. Such features have also been reported theo-
retically.5,21,22 Recent theoretical work on this question9,11

argues that the transparency T of the single-molecule junc-
tion basically determines the step direction. The critical
value was reported to be T=1 /2, with a step down �up� in the
differential conductance at eV=��0 for T�1 /2 �T�1 /2�.
This conclusion seems roughly consistent with existing ex-
perimental data: For the H2 measurements,20 T close to unity
was reported, while typically T�0.1 in the other experi-
ments. However, given the many parameters present in even
the simplest Hamiltonian, one may question why the cross-
over should be universal in the sense that it is only deter-
mined by the transparency T=1 /2. Here, we reexamine the
question of current increase or decrease at the phonon exci-

tation threshold eV=��0. We derive and discuss analytical
results for the current correction �I perturbative in the
electron-phonon coupling strength g. Experimental values
for g are often very small, justifying a truncation of the per-
turbation series already at the lowest nontrivial order. For
that reason, our expressions below are expected to provide
useful estimates for many experiments. However, we will not
attempt a detailed description of specific experiments, but
instead aim at an analytical understanding of vibrational fea-
tures in the I-V characteristics under a simple yet realistic
model. In our opinion, a thorough understanding of the
lowest-order feature is worthwhile, given the complexity of
the physical processes involved. Most available results are
obtained from lengthy numerical calculations and do not eas-
ily yield general insights. In addition, many calculations
were based on essentially uncontrolled approximations, ren-
dering their predictive power questionable. Moreover, some
published theoretical work on this subject have used approxi-
mate schemes that are in conflict with the basic requirement
of current conservation. Current conservation is automati-
cally fulfilled under self-consistent approximations, but is
generally violated otherwise �unless particle-hole symmetry
is present�, limiting the practical usefulness of many approxi-
mations to special parameter sets.23 The lowest-order correc-
tion, however, can be evaluated exactly and, therefore, does
not suffer from any such limitations. Although aspects of the
lowest-order correction �I have been studied before,5,21,22 a
complete and analytical discussion was not given so far. We
show that besides the step feature caused by inelastic pro-
cesses, quasielastic electron-phonon interactions are respon-
sible for another singular term that logarithmically diverges
at eV=��0.

We study the model of just one relevant molecular level
�“dot”�, the so-called local Holstein model, also employed by
previous work,5

H = ��0 + gQ�d†d + ��0b†b + �
k,	=L/R=


��	d†ck	 + H.c.�

+ �
k,	

��k − �	�ck	
† ck	, �1�

which neglects the Coulomb interaction U and is formulated
for spinless dot fermion operator d �we set �=1�. The effect
of the lowest-order correction in U, consistent with our g2
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calculation below, is anyway trivial and can be absorbed by a
renormalization of the chemical potential. We take the stan-
dard wide-band limit for the leads, which is justified if the
lead density of states 0 does not vary significantly in energy
on the relevant scales. The lead modes are occupied accord-
ing to Fermi functions fL/R���= f��−�L/R�, where �L−�R

=eV defines the bias voltage V. We introduce the hybridiza-
tions as �L,R=�0��L/R�2, and define �=�L+�R. Finally, the
boson operator b describes an Einstein phonon mode �vibra-
tion mode� of frequency �0, with linear coupling of strength
g between the displacement operator Q=b+b† and the dot
occupation operator d†d. The electrical current through the
dot can be computed from the retarded dot Green’s function
�GF� evaluated in the presence of the leads and the phonon,
Gr���, according to the well-known expression24

I�V� = −
4e

h

�L�R

�
� d��fL��� − fR����Im Gr��� . �2�

The noninteracting �g=0� Keldysh GF describing the out-of-
equilibrium dot coupled to the leads is

Ĝ0��� =
1

�� − �0�2 + �2��� − �0�diag�1,− 1�

− i�
	

�		2f	��� − 1 − 2f	���
2 − 2f	��� 2f	��� − 1


� . �3�

Note that we use the unrotated Keldysh notation, where the
connection to retarded or advanced GFs Gr/a and the lesser
GF G� is established by

	G−− G−+

G+− G++ 
 = 	 Gr + G� G�

Gr − Ga + G� − Ga + G� 
 ,

such that G0
r���= ��−�0+ i��−1. Since Gr obeys its own

Dyson equation, we only need to compute the retarded self-
energy �r��� to order g2, resulting in

Gr��� = G0
r��� + G0

r����r���G0
r��� , �4�

where the second term defines the correction �I in Eq. �2�.
We will focus on the most interesting T=0 limit from now
on, where the Fermi function is f���=��−��. Defining

�̄ =
�L + �R

2
− �0, �̄	=L/R=
 = �̄ 
 eV/2, �5�

the first �g=0� term yields

I0�V� =
e

h

4�L�R

�
�tan−1��̄L/�� − tan−1��̄R/��� . �6�

The V→0 transparency of the junction, T= �h /e2�dI /dV, fol-
lows as

T =
4�L�R

�2

1

1 + ��̄/��2 � 1. �7�

Note that �0 and the mean chemical potential always appear
in the combined scale �̄.

Let us now analyze the lowest-order correction �I to the
current. It arises from the retarded self-energy �r��� evalu-

ated to order g2 due to phonon processes, entering Eqs. �4�
and �2�. There are two contributions coming from the real
�imaginary� parts �R

r ��I
r�, corresponding to quasielastic �in-

elastic� processes,

�Iqel =
e

h

4�L�R

�
�

�̄R

�̄L

d�
2��

��2 + �2�2�R
r ��� , �8�

�Iinel =
e

h

4�L�R

�
�

�̄R

�̄L

d�
�2 − �2

��2 + �2�2�I
r��� . �9�

The self-energy is readily computed on the perturbative
level, where two diagrams are present in order g2. The “tad-
pole” diagram does not carry frequency dependence and can
be absorbed by a renormalization of �̄. We, therefore, keep
only the standard “rainbow” diagram, which gives the re-
tarded self-energy �r���=�−−���+�−+��� from

�−
��� = � ig2� d�

2�
D0

−
���G0
−
�� − �� . �10�

Here, D̂0��� is the g=0 GF of the displacement operator Q,
which for T=0 is given by

D̂0��� = ��
s=


1

s� − �0 + i0+ − 2�i��� + �0�

− 2�i��� − �0� − �
s

s

s� − �0 + i0+
 .

�11�

Using a Wiener-Hopf decomposition of G0
−−��� into the parts

analytic in the upper or lower complex frequency plane, one
arrives at the result �cf. also Ref. 7�

�R
r ��� = �

	,s=


g2�	

�2 + �� + s�0�2� s

�
ln

��2 + �̄	
2

�� + s�0 − �̄	�

+
� + s�0

2�
	1 +

2s

�
tan−1��̄	/��
� , �12�

�I
r��� = − �

	,s

g2�	��s��̄	 − �� − �0�
�� + s�0�2 + �2 . �13�

The computation of �I is then reduced to a single frequency
integration. We see that due to the phonon mode, the retarded
electron self-energy contains directly the Fermi functions
shifted by 
�0. Hence, a singular �step� dependence of its
imaginary part on the energy results, which must be accom-
panied by a logarithmic singularity in the real part due to
analytic properties. These singularities have been discovered
first by Engelsberg and Schrieffer in their study of bulk Ein-
stein phonons.25 With the above self-energies, it is easy to
check that the requirement for current conservation,23

BRIEF REPORTS PHYSICAL REVIEW B 77, 113405 �2008�

113405-2



� d��G��������� − G���������� = 0,

is fulfilled �also at finite T� to the required g2 order. Let us
first discuss the inelastic part, �Iinel. Using the auxiliary re-
lation for an arbitrary function F�� ,V�,

d

dV
�

�̄R

�̄L

d�F��,V� =
e

2�
	

F��̄	,V� + �
�̄R

�̄L

d�
�F��,V�

�V
,

�14�

some algebra gives the g2 inelastic correction to the T=0
nonlinear conductance for arbitrary parameters in closed
form,

d�Iinel

dV
= −

e2

h
�	V −

��0

e

g22�L�R

�
�
	

�	

�	 �2 − �̄−	
2

��2 + �̄−	
2 �2���̄−	 + 	�0�2 + �2�

+
�2 − ��̄	 − 	�0�2

��2 + ��̄	 − 	�0�2�2��̄	
2 + �2�


 . �15�

We focus now on the singular contribution at eV=��0,
which is best illustrated by analyzing d2�I /dV2. Singular
terms come from the derivative acting on the Heaviside func-
tion in Eq. �15�, and produce a delta peak,

�d2�Iinel

dV2 �
sing

= −
e2

h
	 g

�

24�R�L

�2 cinel�	V −
��0

e

 �16�

with the dimensionless coefficient

cinel =
1 − ���̄/��2 − ��0/2��2�2 + �2�0��L − �R��̄/�3�

�1 + ��̄/� + �0/2��2�2�1 + ��̄/� − �0/2��2�2 ,

�17�

which is the main result of this Brief Report. We will discuss
this result below, but first turn to the quasielastic contribution
�Iqel due to the real part �12� of the self-energy. Using Eq.
�14�, we find again a singular contribution in the differential
conductance at V=��0 /e. We obtain the analytical result,
valid for V���0 /e,

�d�Iqel

dV
�

sing
= −

2

�

e2

h
	 g

�

24�R�L

�2 cqel ln� �

eV − ��0
� ,

�18�

with the dimensionless coefficient

cqel = �
	

− 	
�	

�

�̄ − 	�0/2
�

�1 + ��̄/� + 	�0/2��2�

�1 + ��̄/� + �0/2��2�2�1 + ��̄/� − �0/2��2�2 .

�19�

It is worth mentioning that cqel=0 for large ���0 at the
symmetric point �L=�R. Away from this limit, however, the
logarithmic term in Eq. �18� will be present. All other con-
tributions to �Iqel beyond Eq. �18� are smooth and featureless
at eV���0, and do not affect the characteristic feature in

d2I /dV2, whereas the singular contribution �18� is logarith-
mically divergent at the threshold. Note that this logarithmic
divergence due to quasielastic processes creates a symmetric
dip or peak �depending on the sign of cqel� in the differential
conductance at eV=��0, while the inelastic contributions are
responsible for a step feature. In the full d2I /dV2 curve, this
translates to asymmetric dips or peaks. The relative impor-
tance of inelastic versus quasielastic contributions can be
judged from the ratio cinel /cqel. For the symmetric case, �L
=�R=� /2, a simple result follows from Eqs. �17� and �19�,

r = � cinel

cqel
� = ��2 + �̄2 − �0

2/4
��0/2

� . �20�

For small �0 /� or large �̄, we have r�1 and the inelastic
channel always dominates, while for large �0, quasielastic
processes can be more important. The perturbative results
�18� and �16� obviously break down close to the threshold
voltage. At T=0 and in the absence of an external bath, the
only way to account for the finite lifetime of the phonon, and
hence the smearing of the step and/or peak features, is to take
into account the electronic polarization in the phonon GF.
The retarded polarization function �r��� will then result in a
damping ��−g2�I

r��0� of the phonon mode. We obtain after
some algebra the nonequilibrium electronic polarization
function in analytical form. In the particle-hole symmetric
case, this result simplifies to

�r��� =
�

�

1

��� + 2i��
ln	1 −

��� + 2i��
�2 + V2/4 
 . �21�

This implies the estimate ��g2�0 /��2 in the limit of a soft
phonon �0��, and ��g2� /�0

2 for a hard phonon �0��.
However, phonon damping is, in fact, a higher-order effect in
the electron-phonon coupling, and to consistently account for
the finite damping � while keeping current conservation in-
tact remains a theoretical challenge. Other effects of higher-
order diagrams include the proliferation of steps and/or
peaks at multiples of the phonon frequency �0. Indeed, it is
easy to see that the g2nth-order rainbow diagram in the elec-
tronic self-energy produces a step feature in the differential
conductance at the voltage V=n��0 /e. The appearance of
such step features at multiples of �0 is closely related to the
strong-coupling picture obtained through a polaron
transformation.26 However, when going beyond the lowest
order in g, vertex corrections are also expected to be impor-
tant. Unfortunately, the proper treatment of such nonequilib-
rium many-body effects �respecting the requirements posed
by current conservation� remains a challenging task and is
beyond the scope of this work. For weak electron-phonon
coupling, which appears to be appropriate for many experi-
ments, none of these fine details matter in any case, and the
g2 calculation is sufficient. The d2I /dV2 feature is then de-
termined by Eqs. �16� and �18�, where the damping � in the
phonon mode acts to broaden the delta function in Eq. �16�
within a phenomenological description.

The above results allow us to clarify the question of peak
vs dip in the second derivative, d2I /dV2, which arises due to
the singular inelastic correction �16�. For �L=�R and �̄=0,
where the transparency �7� is ideal, T=1, we observe from
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Eq. �17� that for �0�2�, instead of the expected dip
�cinel�0�, one actually observes a peak. For �̄�0, once
��̄����2+�0

2 /4, one finds a peak. Note that for �̄= 
�, the
transparency �7� is precisely 1 /2, thereby allowing us to ra-
tionalize why previous numerical studies for related
models9,11 reported a T=1 /2 criterion for the transition from
peak to dip. This value correctly describes the transition in
the limit of a soft phonon, �0��, and assuming symmetric
contacts, �L=�R. The value T=1 /2 was, in fact, established
precisely in this parameter regime.9,11 Our analytical result
�17�, shows, however, that, in general, the transition is non-
universal and determined by all parameters. For example, it
can be achieved either by tuning T—where the precise tran-
sition value depends also on �0 and the asymmetry �L−�R,
and is only approximately given by T=1 /2—or by changing
other parameters, such as �R−�L or the ratio between pho-
non frequency and hybridization, �0 /�. The nonuniversality

of the step is also implicit in the early work on phonon-
assisted tunneling through a resonant level by Glazman and
Shekhter.27 On top of this peak or dip structure due to inelas-
tic processes, the quasielastic contribution causes a singular
response near the threshold value eV=��0. This logarithmic
correction to the differential conductance implies an asym-
metric line shape in d2I /dV2 as discussed above. Such asym-
metries have frequently been reported experimentally and in
numerical calculations,5 and they are a direct consequence of
the Engelsberg-Schrieffer singularity.

We thank A. Zazunov and T. Novotny for useful discus-
sions. This work was supported by the DFG SFB TR 12 and
by the ESF network INSTANS. A.O.G. thanks the Humboldt
Foundation for a Friedrich-Wilhelm-Bessel grant enabling
his extended stay in Düsseldorf.

1 A. Nitzan and M. A. Ratner, Science 300, 1384 �2003�.
2 Introducing Molecular Electronics, edited by G. Cuniberti, G.

Fagas, and K. Richter, Lecture Notes in Physics Vol. 680
�Springer, New York, 2005�.

3 M. Tsukada, K. Tagami, K. Hirose, and N. Kobayashi, J. Phys.
Soc. Jpn. 74, 1079 �2005�.

4 N. J. Tao, Nat. Nanotechnol. 1, 173 �2006�.
5 M. Galperin, M. A. Ratner, and A. Nitzan, J. Phys.: Condens.

Matter 19, 103201 �2007�.
6 D. Boese and H. Schoeller, Europhys. Lett. 54, 668 �2001�.
7 K. Flensberg, Phys. Rev. B 68, 205323 �2003�; S. Braig and K.

Flensberg, ibid. 68, 205324 �2003�; G. A. Kaat and K. Flens-
berg, ibid. 71, 155408 �2005�.

8 A. Mitra, I. Aleiner, and A. J. Millis, Phys. Rev. B 69, 245302
�2004�.

9 M. Paulsson, T. Frederiksen, and M. Brandbyge, Phys. Rev. B 72,
201101�R� �2005�; T. Frederiksen, N. Lorente, M. Paulsson, and
M. Brandbyge, ibid. 75, 235441 �2007�.

10 P. S. Cornaglia, H. Ness, and D. R. Grempel, Phys. Rev. Lett. 93,
147201 �2004�; P. S. Cornaglia, D. R. Grempel, and H. Ness,
Phys. Rev. B 71, 075320 �2005�; L. Arrachea and M. J. Rozen-
berg, ibid. 72, 041301�R� �2005�; C. A. Balseiro, P. S. Cor-
naglia, and D. R. Grempel, ibid. 74, 235409 �2006�.

11 L. de la Vega, A. Martin-Rodero, N. Agrait, and A. L. Yeyati,
Phys. Rev. B 73, 075428 �2006�.

12 A. Donarini, M. Grifoni, and K. Richter, Phys. Rev. Lett. 97,
166801 �2006�.

13 A. Zazunov, D. Feinberg, and T. Martin, Phys. Rev. Lett. 97,
196801 �2006�; Phys. Rev. B 73, 115405 �2006�; A. Zazunov,
R. Egger, C. Mora, and T. Martin, ibid. 73, 214501 �2006�; A.
Zazunov and T. Martin, ibid. 76, 033417 �2007�.

14 N. B. Zhitenev, H. Meng, and Z. Bao, Phys. Rev. Lett. 88,
226801 �2002�; X. H. Qiu, G. V. Nazin, and W. Ho, ibid. 92,
206102 �2004�; L. H. Yu, Z. K. Keane, J. W. Ciszek, L. Cheng,
M. P. Stewart, J. M. Tour, and D. Natelson, ibid. 93, 266802

�2004�.
15 H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos,

and P. L. McEuen, Nature �London� 407, 57 �2000�. These au-
thors report transport experiments showing vibrational features,
where ��0�5 meV for the center-of-mass motion of a C60 mol-
ecule between gold electrodes.

16 J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J.
R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruna, P. L. McEuen,
and D. C. Ralph, Nature �London� 417, 722 �2002�; L. H. You
and D. Natelson, Nano Lett. 4, 79 �2004�.

17 A. N. Pasupathy, J. Park, C. Chang, A. V. Soldatov, S. Lebedkin,
R. C. Bialczak, J. E. Grose, L. A. K. Donev, J. P. Sethna, D. C.
Ralph, and P. L. McEuen, Nano Lett. 5, 203 �2005�.

18 B. J. LeRoy, S. G. Lemay, J. Kong, and C. Dekker, Nature �Lon-
don� 432, 371 �2004�.

19 S. Sapmaz, P. Jarillo-Herrero, Ya. M. Blanter, C. Dekker, and H.
S. J. van der Zant, Phys. Rev. Lett. 96, 026801 �2006�.

20 R. H. M. Smit, Y. Noat, C. Untiedt, N. D. Lang, M. C. van
Hemert, and J. M. van Ruitenbeek, Nature �London� 419, 906
�2002�; D. Djukic, K. S. Thygesen, C. Untiedt, R. H. M. Smit,
K. W. Jacobsen, and J. M. van Ruitenbeek, Phys. Rev. B 71,
161402�R� �2005�.

21 T. Mii, S. G. Tikhodeev, and H. Ueba, Phys. Rev. B 68, 205406
�2003�.

22 M. Galperin, M. A. Ratner, and A. Nitzan, J. Chem. Phys. 121,
11965 �2004�.

23 S. Hershfield, J. H. Davies, and J. W. Wilkins, Phys. Rev. B 46,
7046 �1992�.

24 Y. Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev. Lett. 70, 2601
�1993�.

25 S. Engelsberg and J. R. Schrieffer, Phys. Rev. 131, 993 �1963�.
26 A. S. Alexandrov and A. M. Bratkovsky, Phys. Rev. B 67,

235312 �2003�.
27 L. I. Glazman and R. I. Shekhter, Zh. Eksp. Teor. Fiz. 94, 292

�1988� �Sov. Phys. JETP 67, 163 �1988��.

BRIEF REPORTS PHYSICAL REVIEW B 77, 113405 �2008�

113405-4


